If it's not what You are looking for type in the equation solver your own equation and let us solve it.
5x^2+90x=0
a = 5; b = 90; c = 0;
Δ = b2-4ac
Δ = 902-4·5·0
Δ = 8100
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{8100}=90$$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(90)-90}{2*5}=\frac{-180}{10} =-18 $$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(90)+90}{2*5}=\frac{0}{10} =0 $
| (34/x)=(x/17) | | -6+7h=29 | | -2(a+3)–a=0 | | p+6.3=9.1 | | 4+5y=35 | | 32x22+51-x=671 | | -27+3x^2=0 | | 0.04x+0.613=7 | | 25^x-30.5^x=-125 | | 6=36+12x | | w-298=579 | | x=28÷3 | | -5=s/8 | | 200=20d | | u=2u | | 6(u-2)+2=6(u-2)+3+2u | | 692=y-269 | | 6(u-2)+2=6(u-2)+3+u | | 17=z/24 | | 5x6-x=45 | | 7y+36=7(y-5) | | t/16=7 | | 6(u-2)+2=6(u-2)+2+u | | z-18=566 | | 0=2x^2−16x+33 | | 19c=779 | | 270=9f | | 5x+3x-1=39 | | 60n=5 | | 6(u-2)+2=u-1 | | 859=q-72 | | 7s=812 |